If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12t-2t^2=0
a = -2; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-2)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-2}=\frac{-24}{-4} =+6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-2}=\frac{0}{-4} =0 $
| 8t+1/5=t+6/10+t-4/10 | | x²-0.2x-400=0 | | 3x+9/5+x+30/4=11 | | x+0.01=0.21 | | 6x+4=2-+24 | | 7e=31 | | 5x+(-33)=42 | | 4(4x-5)=2(8x+6) | | 4x-6(3-x)=4 | | 4y-7÷3=10 | | H-6=3y-1 | | 54/x+63/(x+6)=3 | | 6(t+3)-11=5 | | x²–32x+252=0, | | 8(9x-6)+x=244 | | 4(4x-7)+x=91 | | 7a=3a+24 | | b=3=2b-1 | | 5x+3x=21 | | 1.04*10^-10=4x³ | | 6(x+6)-5=36-4x-5+10x | | 5x3-2x2+3x-2=0 | | -3(2x+5)=29 | | X^2+12^2=(x+4) | | (5x-1)/3=5(2x+1) | | 3/p-2=13 | | 2x=480 | | 9+5w/2=2w-4 | | 2.1x-70=-18 | | x+x+1/2x=24 | | 6x-1=44 | | 3x-40+4x+15+8x-10=180 |